TheReference

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Saturday, March 16, 2013

Georg Ohm: birthday

Posted on 12:09 AM by Unknown
Albert Einstein (born in Ulm on March 14th, 1879) is such a formidable personality that I gave up the idea to write a biography. The problem is that I know too many things about him and other people know even more things about Einstein etc. Ohm is an easier task.

George Simon Ohm was born in Erlangen, Holy Roman Empire (100 km from the Czech border) on March 16th, 1789. He died in Munich, Kingdom of Bavaria (200 km from the Czech border) at the age of 65. When he was just four months old, he could have stormed the Bastille but he decided not to.

His father was officially uneducated but he was actually one of the most widely respected autodidacts. Georg's mother died when he was ten years old. Among seven siblings, only three survived to adulthood: sister Elizabeth Barbara, Georg Simon, and his younger brother Martin Ohm who would become a famous mathematician (during their lifetime, maybe more famous than Georg Ohm). Martin Ohm figured out what \(a^b\) was for \(a,b\in\CC\); I loved this problem when I was 8 years old or so.




Imagine that it's just 200 years ago – and 4/7 of the children were dying before they reached adulthood. Medicine and related fields have made an amazing progress since Ohm's time. On the other hand, one could be worried that this cruel fate of the children was still imposing some "creative" natural selection on the mankind that became absent sometime in the 20th century. So far, things look fine but who knows what the people will think about this issue in 2100.




Georg Simon Ohm most famously worked as a high school teacher – that's when he discovered his Ohm's law\[

U = RI.

\] I can't forget the joke about the three Ohm's laws: \(U=RI\), \(I=U/R\), \(R=U/I\). I guess that many people, especially among the girls, wouldn't view this as a joke.

Note that the unit "one ohm" of resistance is denoted by the capital Omega, \(\rm\Omega\), because the letters starts almost like Ohm's name. Ohm made the discovery in 1827, when he was 39 and when he was playing with the electrochemical cell invented by Alessandro Volta. Ohm's law is clearly paramount for all electric circuits but sadly enough, electric circuits only began to be a hot topic more than 50 years later. Imagine how rich he would be if he could collect royalties from Ohm's law patents today.

Ohm's career involved various teaching jobs – including those at universities (not the most famous ones) – that were paying so little that he almost starved to death. And that's true despite the fact that he was hired by no one else than the Prussian king at one moment. The king loved Ohm's book and work. Some low-brow colleges that used to employ Ohm didn't so they fired him, and so on.

Johann Dirichlet was among Ohm's students.

There's another law that Ohm proposed, the so-called Ohm's other law or Ohm's acoustic law. Using a modern language, it says that the human ear is a Fourier analyzer that measures \(|\tilde f(\omega)|^2\) for all accessible frequencies \(\omega\).

This statement, known to be partly false, is pretty fascinating. For example, it implicitly says that the relative phases don't matter. For example, look at the graphs of the functions \(\sin(x)+\sin(2x)\) and \(\sin(x)+\cos(2x)\). The graphs of the position of the speaker as a function of time look very different (the second graph is time-reversal-symmetric but the first one is far from it, for example) but because the amplitudes have the same absolute values, we can't hear the difference between these two sounds.

When I was a kid, I played the piano and I was very confused by certain basic things. For example, when I was 7, I was convinced that if you play "C" and "E" at the same moment, the ear must hear the tone in between, "D", if I pick a prominent example. That's of course rubbish – each frequency has its independent "account" – as I understood a year later (even though I surely had to "hear" this fact – hear chords – a long time earlier). But it was still confusing to me why we can't hear the differences between the functions above, for example, and why interference never cancels the same tone coming from two sources etc. You're welcome to offer your opinion.

Ohm's acoustic law answers most of these questions. Nevertheless, musicians have generally hated this law from the beginning – it became a major reason why musicians distrust physicists. It has to be wrong, they feel and hear (?). Well, I am sure that the law "ears are Fourier analyzers" can't be quite true. On the other hand, I haven't found any coherent description by the musicians that would clarify what they really dislike about the law.

Well, I would say that the ear only hears some frequencies, from \(20\) to \(20,000\,{\rm Hz}\) or so; frequencies outside this interval are simply eliminated (gradually). Moreover, it must be able to partly determine the phase of the cycle for low enough frequencies. And it must suffer from limitations of the resolution with which the frequencies may be distinguished; good musicians generally have a more precise sense of hearing. And the brain of course can't remember too much information about the function \(|\tilde f(\omega)|^2\) so it compresses it in some way – determines the loudest components (frequencies) and/or describes the remaining sound as "some sort of noise" etc. Otherwise I am not really able to think about other limitations that the law could have.

Can you help me? My guess is that the dissatisfied musicians must misunderstand some Fourier maths even if their ear is subconsciously doing a good job in the Fourier analysis. And artists may always hate science for "making things dull" (not true!). So I would guess that the opposition is ultimately irrational but I am ready to be proved wrong.
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Posted in science and society | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • Ostragene: realtime evolution in a dirty city
    Ostrava , an industrial hub in the Northeast of the Czech Republic, is the country's third largest city (300,000). It's full of coal...
  • Origin of the name Motl
    When I was a baby, my father would often say that we come a French aristocratic dynasty de Motl – for some time, I tended to buy it ;-). Muc...
  • Likely: latest Atlantic hurricane-free date at least since 1941
    Originally posted on September 4th. Now, 5 days later, it seems that no currently active systems will grow to a hurricane so the records wi...
  • Papers on the ER-EPR correspondence
    This new, standardized, elegant enough name of the Maldacena-Susskind proposal that I used in the title already exceeds the price of this b...
  • Bernhard Riemann: an anniversary
    Georg Friedrich Bernhard Riemann was born in a village in the Kingdom of Hanover on September 17th, 1826 and died in Selasca (Verbania), No...
  • New iPhone likely to have a fingerprint scanner
    One year ago, Apple bought AuthenTec , a Prague-based security company ( 7 Husinecká Street ), for $356 million. One may now check the Czech...
  • Prediction isn't the right method to learn about the past
    Happy New Year 2013 = 33 * 61! The last day of the year is a natural moment for a blog entry about time. At various moments, I wanted to wri...
  • Lubošification of Scott Aaronson is underway
    In 2006, quantum computing guy Scott Aaronson declared that he was ready to write and defend any piece of nonsensical claim about quantum gr...
  • A slower speed of light: MIT relativistic action game
    In the past, this blog focused on relativistic optical effects and visualizations of Einstein's theory: special relativity (download Re...
  • Eric Weinstein's invisible theory of nothing
    On Friday, I received an irritated message from Mel B. who had read articles in the Guardian claiming that Eric Weinstein found a theory of ...

Categories

  • alternative physics (7)
  • astronomy (49)
  • biology (19)
  • cars (2)
  • climate (93)
  • colloquium (1)
  • computers (18)
  • Czechoslovakia (57)
  • Denmark (1)
  • education (7)
  • Europe (33)
  • everyday life (16)
  • experiments (83)
  • France (5)
  • freedom vs PC (11)
  • fusion (3)
  • games (2)
  • geology (5)
  • guest (6)
  • heliophysics (2)
  • IQ (1)
  • Kyoto (5)
  • landscape (9)
  • LHC (40)
  • markets (40)
  • mathematics (37)
  • Middle East (12)
  • missile (9)
  • murders (4)
  • music (3)
  • philosophy of science (73)
  • politics (98)
  • religion (10)
  • Russia (5)
  • science and society (217)
  • sports (5)
  • string vacua and phenomenology (114)
  • stringy quantum gravity (90)
  • TBBT (5)
  • textbooks (2)
  • TV (8)
  • video (22)
  • weather records (30)

Blog Archive

  • ▼  2013 (341)
    • ►  September (14)
    • ►  August (42)
    • ►  July (36)
    • ►  June (39)
    • ►  May (38)
    • ►  April (41)
    • ▼  March (44)
      • Tom Banks: holographic axioms against firewalls
      • 01 result from AMS-02 on 03/04 at 05 pm
      • Antiprotons obey CPT within 5 ppm
      • Reunification of Korea
      • Irrational dissatisfactions with physics
      • Waiting for peak oil: a paradox
      • Americans see the Higgs boson, too
      • Rosatom plans fast reactors based on U-238
      • Speed of light is variable: only in junk media
      • Reagan's Star Wars: 30 years ago
      • Wernher von Braun: 101st birthday
      • Exploding glass: slowed down
      • Margaret Thatcher as the first climate alarmist
      • Cyprus bailout savings tax is better than alternat...
      • Sasha Polyakov joins the Milner Prize winners
      • Pierre Deligne wins Abel Prize
      • Greene et al.: too large landscapes are unstable
      • Equinox, astronomical spring: now
      • Matt Ridley on the greening planet
      • Michio Kaku's confusing Higgs remarks
      • Tyson vs Greene: a lesson in demagogy
      • Christian Doppler: an anniversary
      • Georg Ohm: birthday
      • Paul Krugman, climate, and inconceivable sins
      • God particle's humility on display
      • Pentagon transitions: tools to solve planar \(\NNN...
      • Climategate 2013 is here: FOIA
      • Gustav Kirchhoff: a birthday
      • There are 921,497 CICY four-folds
      • Greening the world's deserts with lots of cows
      • 13 new periodic solutions to the 3-body problem
      • Walter Kohn: 90th birthday
      • Science cannot answer moral questions II
      • ATLAS: 3-sigma excess of \(420\GeV\) type III sees...
      • Reasons to be grateful to Václav Klaus
      • Black hole monodromies explain why inner horizons ...
      • Crisis forgotten: Dow Jones sets a new all-time high
      • Alessandro Volta: an anniversary
      • George Gamow: 109th birthday
      • LHCb: \(7\)-\(\sigma\) and \(9\)-\(\sigma\) anomal...
      • We don't live in a simulation
      • AGW petition by Ranga Myneni: 1 billion signatures...
      • Bubbles support \(10\GeV\) or \(50\GeV\) dark matter
      • Is the Higgs boson just Higgs-like?
    • ►  February (41)
    • ►  January (46)
  • ►  2012 (159)
    • ►  December (37)
    • ►  November (50)
    • ►  October (53)
    • ►  September (19)
Powered by Blogger.

About Me

Unknown
View my complete profile