TheReference

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Wednesday, May 22, 2013

Intriguing spectra of finite unified theories (FUT)

Posted on 10:25 PM by Unknown
In November, I discussed FUTs (finite unified theories) which are \(\NNN=1\) supersymmetric grand-unification-inspired versions of MSSM with the additional constraint that the divergences already cancel at the level of the effective field theory. This finiteness boils down to the vanishing of the beta-functions, some anomalous dimensions, and some relationships between the gauge and Yukawa couplings.

This condition doesn't seem to be a "must" – the divergences may very well be taken care of by the high-energy phenomena (string theory ultimately takes care of all divergences so its approximations don't have to be finite by themselves) – but it is an aesthetically intriguing condition, anyway. Now, the same authors released a new paper
Finite Theories Before and After the Discovery of a Higgs Boson at the LHC (S. Heinemeyer, M. Mondragon, G. Zoupanos)
where they calculate some new predictions and intriguing details.




They focus on the third-generation fermions and their superpartners, the Higgs sector, and the gauginos. The nicest FUTs they consider boast names such as FUTA and FUTB – the latter seem particularly attractive. They also take some LHCb results into account. In these models, \(\tan\beta\) is typically rather large, \(\mu\) is almost necessarily negative.




The spectra seem very intriguing and consistent with everything we know. Unfortunately, they're inaccessible to the LHC – or marginally accessible – and perhaps even inaccessible to ILC/CLIC. I like the representative table of a FUTB model here:\[

\begin{array}{|l|l||l|l|}
\hline
m_b(M_Z) & 2.74 &&
m_t & 174.1 \\ \hline
m_h & 125.0 &&
m_A & 1517 \\ \hline
m_H & 1515&&
m_{H^\pm} & 1518 \\ \hline
m_{\tilde t_1} & 2483 &&
m_{\tilde t_2} & 2808 \\ \hline
m_{\tilde b_1} & 2403 &&
m_{\tilde b_2} & 2786 \\ \hline
m_{\tilde \tau_1} & 892 &&
m_{\tilde \tau_2} & 1089 \\ \hline
m_{\tilde\chi_1^\pm} & 1453 &&
m_{\tilde\chi_2^\pm} & 2127 \\ \hline
m_{\tilde\chi_1^0} & 790 &&
m_{\tilde\chi_2^0} & 1453 \\ \hline
m_{\tilde\chi_3^0} & 2123 &&
m_{\tilde\chi_4^0} & 2127 \\ \hline
m_{\tilde g} & 3632 && {\rm masses}& {\rm in}\,\GeV
\\ \hline
\end{array}

\] You see that the LSP is the lightest neutralino below \(800\GeV\). Staus are just somewhat heavier, \(900\GeV\) and \(1100\GeV\). Both sbottoms and stops fit the pattern that the lightest and heaviest one is at \(2500\GeV\) and \(2800\GeV\), respectively. The second lightest neutralino and the lightest chargino sit at \(1450\GeV\), the remaining four faces of the God particle find themselves above \(1500\GeV\) while the heavier chargino and the heaviest two neutralinos are above \(2100\GeV\). Finally, the gluino is above \(3600\GeV\).

Particularly the last figure is rather high (in a broader ensemble of models they analyze, the masses may go up to \(10\TeV\) or so). We would have trouble to see such a gluino for years. But this model or at least similar models may be right. From a theoretical viewpoint, I see absolutely no preference when I compare models with gluinos at \(1200\GeV\) and \(3600\GeV\). Some people become very emotional and start to say that one of them has to be right or wrong or its rightness or wrongness means something a priori. Well, it just doesn't. Nature doesn't give a damn whether it's easy or hard for us to observe the superpartners. Once we observe them, many new things start to be clear. If we don't observe them, we are still extremely far from ruling out supersymmetry – and nice special supersymmetric models such as FUTB in this paper.

Its not my – or other humans' – job to rate the beauty of the values of particle physics parameters that emerge from Nature's decisions. It's Her job. Nevertheless, I must say that I would find a spectrum like the table above – or many other tables – elegant. It would probably mean that all these obnoxious idiots who like to say bad things about SUSY could remain loud for many more years. That's an annoying vision from a personal viewpoint but it can't change anything about the reality and it is less important than the actual beauty and physical near-inevitability that is carried by supersymmetry at some scale. If the known – mostly theoretical – evidence makes two models equally plausible and elegant, then one is obliged to love both of them equally, regardless of the fact that one of them may be much more accessible to the experiments. I view this commandment as a part of the scientific integrity.
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Posted in experiments, LHC, string vacua and phenomenology | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • Ostragene: realtime evolution in a dirty city
    Ostrava , an industrial hub in the Northeast of the Czech Republic, is the country's third largest city (300,000). It's full of coal...
  • Likely: latest Atlantic hurricane-free date at least since 1941
    Originally posted on September 4th. Now, 5 days later, it seems that no currently active systems will grow to a hurricane so the records wi...
  • Origin of the name Motl
    When I was a baby, my father would often say that we come a French aristocratic dynasty de Motl – for some time, I tended to buy it ;-). Muc...
  • Papers on the ER-EPR correspondence
    This new, standardized, elegant enough name of the Maldacena-Susskind proposal that I used in the title already exceeds the price of this b...
  • Bernhard Riemann: an anniversary
    Georg Friedrich Bernhard Riemann was born in a village in the Kingdom of Hanover on September 17th, 1826 and died in Selasca (Verbania), No...
  • New iPhone likely to have a fingerprint scanner
    One year ago, Apple bought AuthenTec , a Prague-based security company ( 7 Husinecká Street ), for $356 million. One may now check the Czech...
  • Prediction isn't the right method to learn about the past
    Happy New Year 2013 = 33 * 61! The last day of the year is a natural moment for a blog entry about time. At various moments, I wanted to wri...
  • Lubošification of Scott Aaronson is underway
    In 2006, quantum computing guy Scott Aaronson declared that he was ready to write and defend any piece of nonsensical claim about quantum gr...
  • A slower speed of light: MIT relativistic action game
    In the past, this blog focused on relativistic optical effects and visualizations of Einstein's theory: special relativity (download Re...
  • Eric Weinstein's invisible theory of nothing
    On Friday, I received an irritated message from Mel B. who had read articles in the Guardian claiming that Eric Weinstein found a theory of ...

Categories

  • alternative physics (7)
  • astronomy (49)
  • biology (19)
  • cars (2)
  • climate (93)
  • colloquium (1)
  • computers (18)
  • Czechoslovakia (57)
  • Denmark (1)
  • education (7)
  • Europe (33)
  • everyday life (16)
  • experiments (83)
  • France (5)
  • freedom vs PC (11)
  • fusion (3)
  • games (2)
  • geology (5)
  • guest (6)
  • heliophysics (2)
  • IQ (1)
  • Kyoto (5)
  • landscape (9)
  • LHC (40)
  • markets (40)
  • mathematics (37)
  • Middle East (12)
  • missile (9)
  • murders (4)
  • music (3)
  • philosophy of science (73)
  • politics (98)
  • religion (10)
  • Russia (5)
  • science and society (217)
  • sports (5)
  • string vacua and phenomenology (114)
  • stringy quantum gravity (90)
  • TBBT (5)
  • textbooks (2)
  • TV (8)
  • video (22)
  • weather records (30)

Blog Archive

  • ▼  2013 (341)
    • ►  September (14)
    • ►  August (42)
    • ►  July (36)
    • ►  June (39)
    • ▼  May (38)
      • Quintuplets in physics
      • AGW: due to cosmic rays and freons?
      • An extremely cloudy Prague in 2013
      • SUSY GUT with \(A_4\): six predictions for fermion...
      • Encouraging high school students talented in physics
      • Heuristic ideas about bounded prime gaps
      • Smoluchowski, Milanković: birthdays
      • Anticommunist uprising in Pilsen: 60 years ago
      • Global warming is here to stay
      • Eric Weinstein's invisible theory of nothing
      • Sheldon Glashow on future of HEP in the U.S.
      • Palo Alto mass killer of Ukulele Orchestra caught
      • Does global warming cause tornadoes?
      • Augustin-Louis Cauchy: an anniversary
      • Intriguing spectra of finite unified theories (FUT)
      • A proof of the Riemann Hypothesis using the conver...
      • Ask questions to James Hansen
      • Anthony Zee: Einstein Gravity in a Nutshell
      • Tommaso Dorigo impressed by a cold fusion paper
      • Light Dirac RH sneutrinos seen by CDMS and others?
      • Investigation of the largest Czech credit union: a...
      • Ways to discover matrix string theory
      • President is right to veto Martin Putna's professo...
      • William Happer on CNBC
      • String theory = Bayesian inference?
      • Valtr Komárek: 1930-2013
      • Novim Group: "Just Science" AGW app
      • Richard Dawid: String Theory and the Scientific Me...
      • IRS was used to intimidate political opposition in...
      • Feynman, Schwarzschild: anniversaries
      • Why we should work hard to raise the CO2 concentra...
      • In the honor of the heterotic string
      • Nassim Haramein: science as religion
      • Short questions often require long answers and proofs
      • Comparing the depth of the millennium problems
      • Aaronson's anthropic dilemmas
      • Will you help John Cook "quantify the consensus"?
      • Two dark matter papers
    • ►  April (41)
    • ►  March (44)
    • ►  February (41)
    • ►  January (46)
  • ►  2012 (159)
    • ►  December (37)
    • ►  November (50)
    • ►  October (53)
    • ►  September (19)
Powered by Blogger.

About Me

Unknown
View my complete profile