TheReference

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Tuesday, January 15, 2013

New Higgses at \(90\)-\(105\GeV\), \(\tan\beta=6\)

Posted on 9:24 AM by Unknown
A few days ago, I wanted to write about a new paper
Recent Developments in HiggsBounds and a Preview of HiggsSignals (PDF)
by Philip Bechtle and 6 co-authors. I decided there had been too many articles about SUSY fits on this blog. However, even an enemy of SUSY named Tommaso Dorigo positively mentioned that paper so I decided a comment should be here, too.

They discuss games with (similar authors') publicly available program HiggsBounds and its various versions (3.8.0 and 4.0.0) which unifies the constraints from LEP, Tevatron, and LHC experiments. Feel free to click at the link in the previous sentence and try to play with the web-based user interface to this software. Or download the source.




They are currently developing a new program, HiggsSignals, which is not yet available. However, they have already used it to optimize the values of parameters in the Minimal Supersymmetric Standard Model (MSSM) given the experimental constraints.



Click to zoom in.

In my (reverted) color conventions, the white area is the most preferred one because it has the lowest value of \(\chi^2\), something that counts the "total error" of all the predictions in the most natural way (in units of the standards deviations, and added in quadrature from all sources: see my intro to chi-squared distributions). Because of a transparent color, the diagonal lines indicating exclusion – both above and beneath the grey dashed lines – have disappeared. I apologize but you may figure out what the picture says, anyway.

You see that the optimum point is one that predicts that the observed Higgs boson at \(126\GeV\) is the heavier one among the CP-even neutral bosons (note that minimal SUSY predicts that God has five faces). And the lighter one has mass about \(100\GeV\). This doesn't contradict the LEP exclusions because this lighter Higgs boson has reduced couplings to the Z-bosons.

Also, the ratio of the SUSY Higgs vevs is \(\tan\beta\approx 6\) but the "white" values between \(4\) and \(8\) are just fine and the "yellow" areas are marginally fine, too.

The best point has \(\chi^2\approx 29.3\) which is pretty much what you expect for \(32\) degrees of freedom – well, the average \(\chi^2\) would be \(32\) itself. There's really pretty much no fine-tuning at that point – nothing contrived to be found here. In fact, the predictions look a bit more accurate than what you expect from a correct model by chance in average. ;-) You may see on the picture that this point predicts the CP-odd Higgs mass to be \(m_A\approx 101\GeV\) and it is said to predict the masses of the charged Higgs bosons \(m_{H^\pm}\sim 126\GeV\) which are almost degenerate with the Higgs boson we already know. And the lighter CP-even neutral Higgs boson has \(m_h\approx 92.3\GeV\).

If it is true, discoveries of new particles are guaranteed in the new run of the LHC, I think.

Personally, I find the very scenario that the first discovered Higgs boson is actually the heavier one to be clever and comical. If it is true, it is another example of Nature's immense sense of humor and our tendency to only study "the most likely scenario" even though the "second or third most likely scenario" often turns out more sensible and, ultimately, true. (Note that the number of generations is three, not one which would be more minimal. Also, the electroweak gauge group has an extra \(U(1)_Y\) which could also look like a deviation from minimality. And so on.) We often make too mechanistic assumptions about the hierarchies and inequalities between particle masses – we often think that the ranking is known even before any experiment. In this way, we often miss whole interesting chunks of the space of theories and this fact often implies that we're shown wrong.

However, we're also learning about this defect of ours, at least in some cases. So people face no psychological problems anymore when they try to understand that the superpartners (squarks) of the heavier quarks are likely to be lighter and that the third generation neutrino may also be closer to the lighter mass eigenstate than the first generation neutrino. These were just two examples of "counterintuitive hierarchies". The "lighter but later discovered" Higgs boson could be a magnificent new example if it were true.

A related point is that we see that there are still many scenarios in which new, so far undiscovered particles are very light. For example, all the new Higgses predicted by SUSY may be lighter than the Higgs boson we know.
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Posted in experiments, LHC, string vacua and phenomenology | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • Ostragene: realtime evolution in a dirty city
    Ostrava , an industrial hub in the Northeast of the Czech Republic, is the country's third largest city (300,000). It's full of coal...
  • Origin of the name Motl
    When I was a baby, my father would often say that we come a French aristocratic dynasty de Motl – for some time, I tended to buy it ;-). Muc...
  • Likely: latest Atlantic hurricane-free date at least since 1941
    Originally posted on September 4th. Now, 5 days later, it seems that no currently active systems will grow to a hurricane so the records wi...
  • Papers on the ER-EPR correspondence
    This new, standardized, elegant enough name of the Maldacena-Susskind proposal that I used in the title already exceeds the price of this b...
  • Bernhard Riemann: an anniversary
    Georg Friedrich Bernhard Riemann was born in a village in the Kingdom of Hanover on September 17th, 1826 and died in Selasca (Verbania), No...
  • New iPhone likely to have a fingerprint scanner
    One year ago, Apple bought AuthenTec , a Prague-based security company ( 7 Husinecká Street ), for $356 million. One may now check the Czech...
  • Prediction isn't the right method to learn about the past
    Happy New Year 2013 = 33 * 61! The last day of the year is a natural moment for a blog entry about time. At various moments, I wanted to wri...
  • Lubošification of Scott Aaronson is underway
    In 2006, quantum computing guy Scott Aaronson declared that he was ready to write and defend any piece of nonsensical claim about quantum gr...
  • A slower speed of light: MIT relativistic action game
    In the past, this blog focused on relativistic optical effects and visualizations of Einstein's theory: special relativity (download Re...
  • Eric Weinstein's invisible theory of nothing
    On Friday, I received an irritated message from Mel B. who had read articles in the Guardian claiming that Eric Weinstein found a theory of ...

Categories

  • alternative physics (7)
  • astronomy (49)
  • biology (19)
  • cars (2)
  • climate (93)
  • colloquium (1)
  • computers (18)
  • Czechoslovakia (57)
  • Denmark (1)
  • education (7)
  • Europe (33)
  • everyday life (16)
  • experiments (83)
  • France (5)
  • freedom vs PC (11)
  • fusion (3)
  • games (2)
  • geology (5)
  • guest (6)
  • heliophysics (2)
  • IQ (1)
  • Kyoto (5)
  • landscape (9)
  • LHC (40)
  • markets (40)
  • mathematics (37)
  • Middle East (12)
  • missile (9)
  • murders (4)
  • music (3)
  • philosophy of science (73)
  • politics (98)
  • religion (10)
  • Russia (5)
  • science and society (217)
  • sports (5)
  • string vacua and phenomenology (114)
  • stringy quantum gravity (90)
  • TBBT (5)
  • textbooks (2)
  • TV (8)
  • video (22)
  • weather records (30)

Blog Archive

  • ▼  2013 (341)
    • ►  September (14)
    • ►  August (42)
    • ►  July (36)
    • ►  June (39)
    • ►  May (38)
    • ►  April (41)
    • ►  March (44)
    • ►  February (41)
    • ▼  January (46)
      • Czech temperature record 1961-2012
      • Evolving portrait of the electron
      • Feed URLs for blog categories
      • A theory of everything is an important research pr...
      • A visit to Crumlaw
      • Klaus' successor: Miloš Zeman elected Czech president
      • Weinberg's evolving views on quantum mechanics
      • HEP: the bias favors women
      • CNN: Marc Morano on extreme weather trends
      • A tragedy named Schwarzenberg
      • Medical literature: do wrong results prevail?
      • Are slow quantum computers needed to demolish fire...
      • Lasers: Star Trek's tractor beam tugs particles in...
      • Slovak CIA spy caught in Iran
      • Mapping all possible physical theories
      • Statistics, laymen, and shuffling cards
      • Lance Armstrong and ephemerality of sports
      • What did the winters look like before global warming?
      • Scottish streets became opaque to Higgs
      • Growing Moon near the horizon and binocular vision
      • Sean Carroll, Copenhagen, and consensus
      • Quantum physics doesn't depend on definitions of o...
      • Clock: doom arrives in five minutes
      • Anthem, foreigners, and PC: Czech edition
      • New Higgses at \(90\)-\(105\GeV\), \(\tan\beta=6\)
      • Czech Budweiser defends the trademark in the U.K.
      • Edge: What should we be worried about?
      • Diverse forms of energy
      • A projection of future drought one can't believe
      • Looming dark matter announcements
      • Trillion dollar coin: a road to Hell
      • Polls: Choose your Czech president
      • Poll about foundations of QM: "experts" disagree o...
      • Gustáv Husák: 100 years
      • RSS AMSU: 2012 was 11th warmest year
      • Nonsensical hype on negative temperatures
      • Dine-Haber symposium in Santa Cruz
      • Irrational hysteria about Klaus' amnesty
      • LHC: discovering grand unification
      • Czech presidential candidates: test your English
      • Theory of something: QM has reached limits
      • The world as seen by the LHC protons
      • Al Jazeera buys TV from Al Gore et al.
      • Feynman's "Ode to a Flower": an animation
      • NYT urges Obama to introduce socialism
      • Greenhouse effect doesn't contradict any laws of p...
  • ►  2012 (159)
    • ►  December (37)
    • ►  November (50)
    • ►  October (53)
    • ►  September (19)
Powered by Blogger.

About Me

Unknown
View my complete profile